Neural network streamflow forecasting
نویسندگان
چکیده
Classification of heterogeneous precipitation fields for the assessment and possible improvement of lumped neural network models for streamflow forecasts N. Lauzon, F. Anctil, and C. W. Baxter Golder Associates, Calgary, Canada Département de génie civil, Pavillon Pouliot, Université Laval, Québec, G1K 7P4, Canada HYDRANNT Consulting Inc., Port Coquitlam, Canada Received: 20 December 2005 – Accepted: 16 January 2006 – Published: 23 February 2006 Correspondence to: F. Anctil ([email protected])
منابع مشابه
Short-term Streamflow Forecasting: ARIMA Vs Neural Networks
Streamflow forecasting is very important for water resources management and flood defence. In this paper two forecasting methods are compared: ARIMA versus a multilayer perceptron neural network. This comparison is done by forecasting a streamflow of a Mexican river. Surprising results showed that in a monthly basis, ARIMA has lower prediction errors than this Neural Network. Key-Words: Auto re...
متن کاملLong-term Streamflow Forecasting by Adaptive Neuro-Fuzzy Inference System Using K-fold Cross-validation: (Case Study: Taleghan Basin, Iran)
Streamflow forecasting has an important role in water resource management (e.g. flood control, drought management, reservoir design, etc.). In this paper, the application of Adaptive Neuro Fuzzy Inference System (ANFIS) is used for long-term streamflow forecasting (monthly, seasonal) and moreover, cross-validation method (K-fold) is investigated to evaluate test-training data in the model.Then,...
متن کاملAn Hourly Streamflow Forecasting Model Coupled with an Enforced Learning Strategy
Floods, one of the most significant natural hazards, often result in loss of life and property. Accurate hourly streamflow forecasting is always a key issue in hydrology for flood hazard mitigation. To improve the performance of hourly streamflow forecasting, a methodology concerning the development of neural network (NN) based models with an enforced learning strategy is proposed in this paper...
متن کاملStreamflow Forecasting Using Empirical Wavelet Transform and Artificial Neural Networks
Accurate and reliable streamflow forecasting plays an important role in various aspects of water resources management such as reservoir scheduling and water supply. This paper shows the development of a novel hybrid model for streamflow forecasting and demonstrates its efficiency. In the proposed hybrid model for streamflow forecasting, the empirical wavelet transform (EWT) is firstly employed ...
متن کاملCombined Forecasting of Streamflow Based on Cross Entropy
In this study, we developed a model of combined streamflow forecasting based on cross entropy to solve the problems of streamflow complexity and random hydrological processes. First, we analyzed the streamflow data obtained from Wudaogou station on the Huifa River, which is the second tributary of the Songhua River, and found that the streamflow was characterized by fluctuations and periodicity...
متن کاملPrevisão De Vazões Médias Mensais Usando Redes Neurais Nebulosas
This paper presents a neural fuzzy network model for seasonal streamflow forecasting. The model is based on a constructive learning method where neurons groups compete when the network receives a new input, so that it learns the fuzzy rules and membership functions essential for modelling a fuzzy system. The model was applied to the problem of seasonal streamflow forecasting using a database of...
متن کامل